x^3+(3m^2-4)x^2+(m^2+2m+3)x+m=0

Simple and best practice solution for x^3+(3m^2-4)x^2+(m^2+2m+3)x+m=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^3+(3m^2-4)x^2+(m^2+2m+3)x+m=0 equation:


Simplifying
x3 + (3m2 + -4) * x2 + (m2 + 2m + 3) * x + m = 0

Reorder the terms:
x3 + (-4 + 3m2) * x2 + (m2 + 2m + 3) * x + m = 0

Reorder the terms for easier multiplication:
x3 + x2(-4 + 3m2) + (m2 + 2m + 3) * x + m = 0
x3 + (-4 * x2 + 3m2 * x2) + (m2 + 2m + 3) * x + m = 0

Reorder the terms:
x3 + (3m2x2 + -4x2) + (m2 + 2m + 3) * x + m = 0
x3 + (3m2x2 + -4x2) + (m2 + 2m + 3) * x + m = 0

Reorder the terms:
x3 + 3m2x2 + -4x2 + (3 + 2m + m2) * x + m = 0

Reorder the terms for easier multiplication:
x3 + 3m2x2 + -4x2 + x(3 + 2m + m2) + m = 0
x3 + 3m2x2 + -4x2 + (3 * x + 2m * x + m2 * x) + m = 0

Reorder the terms:
x3 + 3m2x2 + -4x2 + (2mx + m2x + 3x) + m = 0
x3 + 3m2x2 + -4x2 + (2mx + m2x + 3x) + m = 0

Reorder the terms:
m + 2mx + m2x + 3m2x2 + 3x + -4x2 + x3 = 0

Solving
m + 2mx + m2x + 3m2x2 + 3x + -4x2 + x3 = 0

Solving for variable 'm'.

The solution to this equation could not be determined.

See similar equations:

| -20s+1=-s+6-19s | | 7sen^2(x)+cos^2(x)=7 | | 7sin^2(x)+cos^2(x)=7 | | 73.6x3/8 | | 2x-3(x+5)=35-3x | | 4x=20/3 | | -4-12x=-96 | | 2x-1log=3x+1log | | 2x^2-18x+37=(x-7)(x-7) | | 5z+17z=198 | | 5a+3b+7c+12= | | x^2/6-x/2=3(x-5) | | 7(6x+4)=-42x-28 | | 10.3=33.1 | | 7m+8(m+z)= | | -2x+0=6 | | y=-1/3*6-1 | | y=-1/3*3-1 | | 3x+4+7X+5+2X+9=186 | | 2=z/3-2 | | 4x-12+36=64-2x+4 | | 13x+13x=4x+5 | | 30-4x=50-44x | | X^2=16-63 | | Graphy=[5x]-2 | | 3q-1=5 | | 16=16t^2+64 | | Y=[5x]-2 | | 16h=-16t^2+64e | | 17-2u=7 | | 22=1/2(22^2-n) | | 1/8-x/9=7/72 |

Equations solver categories